Exercise 59

Find the absolute maximum and absolute minimum values of f on the given interval.

$$
f(x)=x^{-2} \ln x, \quad\left[\frac{1}{2}, 4\right]
$$

Solution

Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x^{-2} \ln x\right) \\
& =\left[\frac{d}{d x}\left(x^{-2}\right)\right] \ln x+x^{-2}\left[\frac{d}{d x}(\ln x)\right] \\
& =\left(-2 x^{-3}\right) \ln x+x^{-2}\left(\frac{1}{x}\right) \\
& =-\frac{2 \ln x}{x^{3}}+\frac{1}{x^{3}} \\
& =\frac{1-2 \ln x}{x^{3}}
\end{aligned}
$$

Set what's in the numerator equal to zero, and set what's in the denominator equal to zero. Solve both equations for x.

$$
\begin{array}{rl}
1-2 \ln x=0 & x^{3}=0 \\
\ln x=\frac{1}{2} & x=0 \\
x=e^{1 / 2} \approx 1.64872 & x=0
\end{array}
$$

Only $x=e^{1 / 2}$ is within $[0.5,4]$, so evaluate f here.

$$
f\left(e^{1 / 2}\right)=\left(e^{1 / 2}\right)^{-2} \ln e^{1 / 2}=\frac{1}{2 e} \approx 0.18394 \quad \text { (absolute maximum) }
$$

Now evaluate the function at the endpoints of the interval.

$$
\begin{aligned}
f\left(\frac{1}{2}\right) & =\left(\frac{1}{2}\right)^{-2} \ln \frac{1}{2}=-4 \ln 2 \approx-2.77259 \quad \quad \text { (absolute minimum) } \\
f(4) & =(4)^{-2} \ln 4 \approx 0.0866434
\end{aligned}
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $\left[\frac{1}{2}, 4\right]$.

The graph of the function below illustrates these results.
-

